|||

Multi-stage sampling together with hierarchical/ mixed effects models: which packages?

Dear R experts,

I sent this question to the r-help list but didn’t get much response, probably because it is more of a stats question. But as this blog is syndicated on r-bloggers I thought I would try it again here on this blog. If I am barking up the wrong tree, feel free to flame.

When I have to analyze educational datasets with samples of children from samples of schools and which include sampling weights, I use the survey package e.g. to calculate means and confidence intervals or to do a linear model. But this kind of design (e.g. children nested inside schools) also as I understand it requires looking at the mixed effects. But this isn’t possible using the survey package. Perhaps I am better advised to use nlme - I guess I could use the sample weights as predictors in nlme regressions but I don’t think that is correct.

It seems that this kind of design (in fact any stratified survey sample which includes nested levels) needs analysing from both perspectives - (survey weights and mixed effects) at once - but the packages of choice for each of these perspectives, survey and nlme, each don’t seem to have slots for the other perspective.

Up next IFRC Haiti Learning Conference and Evaluation Framework - main documents Here they are: https://www.dropbox.com/sh/ytsmeoxg7c6fnnl/AAAqwFMHiQBKsa7MXBUNSPwLa?dl=0 The five-year plan is dead, long live the five-year plan! Interesting discussion taking place on the XCEval mailing list. Deborah Rugg, UNEG Chair and OIOS IED Director, posted selective highlights of final
Latest posts Making notes on PDFs without computer or paper Publications causal-map Causal Map intro Causal Mapping - an earlier guide The walk to school in Sarajevo Glitches Draft blog post for AEA365 Theory Maker! Inventory & analysis of small conservation grants, C&W Africa - Powell & Mesbach! Lots of charts! Answering the “why” question: piecing together multiple pieces of causal information rbind.fill for 1-dimensional tables in r yED graph editor Examples of trivial graph format Using attr labels for ggplot An evaluation puzzle: “Talent show” An evaluation puzzle: “Mobile first” An evaluation puzzle: “Many hands” An evaluation puzzle: Loaves and fishes An evaluation puzzle: “Freak weather” An evaluation puzzle: “Billionaire” Using Dropbox for syncing Shiny app data on Amazon EC2 Progress on the Causal Map app Articles and presentations related to Causal Maps and Theorymaker Better ways to present country-level data on a world map: equal-area cartograms A starter kit for reproducible research with R A reproducible workflow for evaluation reports Welcome to the Wiggle Room Realtime comments on a Theory of Change Responses to open questions shown as tooltips in a chart A panel on visualising Theories of Change for EES 2018?